Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38613482

RESUMO

The implant material at the fracture site influences fracture healing not only from biological perspective but also from mechanical perspective. Biodegradable implants such as magnesium (Mg) based alloys have shown faster secondary bone healing properties as compared to bioinert implants such as titanium (Ti). The general reasoning behind this is the benefit of Mg from biocompatibility perspectives. We studied the effect of Ti and Mg as base materials for implants from mechanical perspectives, where we focused on the displacements at the fracture site of the tibia and their influence on the stimulus for bone healing. We found out that in comparison to Ti, Mg implants have minimal stress shielding problem, only which led to better mechanical stimulus at the fracture site.

2.
J Funct Biomater ; 14(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37623664

RESUMO

Biocompatible polymers such as polymethyl methacrylate (PMMA), despite fulfilling biomedical aspects, lack the mechanical strength needed for hard-tissue implant applications. This gap can be closed by using composites with metallic reinforcements, as their adaptable mechanical properties can overcome this problem. Keeping this in mind, novel Ti-mesh-reinforced PMMA composites were developed. The influence of the orientation and volume fraction of the mesh on the mechanical properties of the composites was investigated. The composites were prepared by adding Ti meshes between PMMA layers, cured by hot-pressing above the glass transition temperature of PMMA, where the interdiffusion of PMMA through the spaces in the Ti mesh provided sufficient mechanical clamping and adhesion between the layers. The increase in the volume fraction of Ti led to a tremendous improvement in the mechanical properties of the composites. A significant anisotropic behaviour was analysed depending on the direction of the mesh. Furthermore, the shaping possibilities of these composites were investigated via four-point bending tests. High shaping possibility was found for these composites when they were shaped at elevated temperature. These promising results show the potential of these materials to be used for patient-specific implant applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...